
misassembly_detection Documentation
Release 1.0

Rebecca R. Murphy

September 23, 2014

Contents

1 NxRepair: API 3

2 Tutorial: Misassembly Detection using NxRepair 5
2.1 Installing NxRepair . 5
2.2 Running NxRepair . 5
2.3 How Does it Work? . 6

3 Indices and tables 7

Python Module Index 9

i

ii

misassembly_detection Documentation, Release 1.0

Contents:

Contents 1

misassembly_detection Documentation, Release 1.0

2 Contents

CHAPTER 1

NxRepair: API

Contents:

class nxrepair.aligned_assembly(bamfile, fastafile, min_size, threshold, step, window, minmapq,
maxinsert, fraction, prior)

Class to hold a set of mate pair or paired end reads aligned to the scaffolded genome assembly

breakContigs_double(outfile, breakpoints, trim)
Function to break a contigs at positions identified as assembly errors and write a new fasta file containing
all contigs (both altered and unaltered).

Makes a two-point break at the identified misassembly position, splitting at 5 Kb upstream and downstream
of the misassembly and (currently) excluding the misassembled region.

Arguments: outfile: name of the new fasta file (including filepath) breakpoints: dictionary of misassem-
blies. key = contig reference ID, value = list of misassembly positions within the contig trim: distance, in
bases, to trim from each each edge of a breakpoint to remove misassembly (integer)

get_anomalies(outfile, trim, img_name=None)
Function to determine the frequency of anomalous mate pair behaviour across the entire genome assembly
and return a dictionary where: key = contig reference IDs, value = list of postions within that contig where
an assembly error is identified and the contig should be broken.

Calls get_size_anomalies and get_mapping_anomalies for each contig larger than the
aligned_assembly.min_size; makes a .csv file listing for each contig the positions of identified mis-
assemblies and their corresponding anomalous scores.

Arguments: outfile: name of file (including filepath) to store the list of contig misassemblies.

Keyword Arguments: img_name: name of file (including filepath, not including filetype) to store plots of
alignment quality

get_mapping_anomalies()
Function to determine the frequency of strand mapping anomalies across the entire genome assembly.

Calls get_read_mappings for each contig larger than the aligned_assembly.min_size and returns: 1) a dic-
tionary with keys = contig reference IDs; values = list of positions and strand alignment ratios as described
in get_read_mappings 2) a dictionary of anomalies wiht keys = contig reference IDs, values = [list of po-
sitions for which the ratio of correctly aligned strands < 0.75 (currently hard-coded), corresponding ratio
of correctly aligned strands]

get_read_mappings(ref)
Function to calculate the fraction of reads pairs within a contig that align correctly to opposite strands.

Return five arrays: the positions at which strand alignment was evaluated, the fraction correctly aligned,
the fraction incorrectly aligned to the same strand, the unmapped fraction and the fraction that have some

3

misassembly_detection Documentation, Release 1.0

other alignment issue.

Arguments: ref: the reference id of the contig to be evaulated

get_read_size_distribution()
Function to calculate global insert size distribution across the whole assembly Return a frequency table of
insert sizes as a dictionary with key = insert size, value = frequency

get_reads(ref, start, end)
Function to fetch reads aligned to a specific part of the assembled genome and return a list of aligned reads,
where each list entry is a tuple: (read start position, read end position, read name, strand alignment) and
strand alignment is a boolean indicating whether the two reads of a read pair align correctly to opposite
strands. Reads are fetched that align to contig “ref” between positions “start” and “end”.

Arguments: ref: the name of the contig from which aligned reads are to be fetched. start: the position on
the contig from which to start fetching aligned reads end: the position on the contig from which to end
fetching aligned reads

get_size_anomalies()
Function to determine the frequency of insert size anomalies across the entire genome assembly.

Calls probability_of_readlength for each contig larger than the aligned_assembly.min_size and returns:
1) a dictionary with keys = contig reference IDs; values = array of Zscores as described in probabil-
ity_of_readlength 2) a dictionary of anomalies wiht keys = contig reference IDs, values = [list of positions
for which abs(z-score) > 2 (currently hard-coded), corresponding z-score value]

make_tree(ref)
Function to construct an interval tree from reads aligning to a contig and return the interval tree.

The interval tree stores nodes with properties start (start postition of interval), end (end position of interval)
and other, which is a tuple of the mate pair name (string) and the strand alignment of the two paired reads
(boolean).

Arguments: ref: Reference ID of the contig for which the interval tree is to be constructed

4 Chapter 1. NxRepair: API

CHAPTER 2

Tutorial: Misassembly Detection using NxRepair

NxRepair is a python module that automatically detects large structural errors in de novo assemblies using Nextera
mate pair reads. The decector will break a contig at the site of an identified misassembly and will generate a new fasta
file containing both the corrected contigs and the correct, unaffected contigs.

2.1 Installing NxRepair

NxRepair program can be cloned from github:

git clone https://github.com/rebeccaroisin/nxrepair

NxRepair uses several other python libraries, which you will need to install. Specifically, you will need:

• scipy

• numpy

• matplotlib

• pysam

Scipy, numpy and matplotlib can be installed using your favourite package manager or from the Python Package Index
(PyPI) using:

pip install numpy
pip install scipy
pip install matplotlib

If you don’t currently have any of these libraries, we recommend installing Anaconda, a python distribution that
includes all of these libraries, along with all major scientific and analytical python packages.

Pysam can also be installed using “pip install”, but errors are more common.

Assistance with installation errors for pysam can be found online. Note that the current version of pysam wraps
samtools-0.1.19 and tabix-0.2.6.

2.2 Running NxRepair

NxRepair can be run from the command line.

python nxrepair.py aligned_matepairs.bam assemblyfasta.fasta error_locations.csv new_fasta.fasta

5

https://store.continuum.io/cshop/anaconda/
https://groups.google.com/forum/#!forum/pysam-user-group

misassembly_detection Documentation, Release 1.0

The required arguments are as follows:

• aligned_matepairs.bam: an indexed bam file of mate pair reads aligned to your assembly;

• assemblyfasta.fasta: the fasta file containing your contigs;

• outfile: the name of a csv file in which to store the Z scores generated by NxRepair;

• newfasta: filename of the fasta file that will hold the new contigs following analysis.

There are also several optional arguments, which can be used to tune the NxRepair analysis. These are described in
the table below.

Parame-
ter

Default
Value

Meaning

imgname None Prefix under which to save plots.
maxinsert 30000 Maximum insert size, below which a read pair is included in calculating population

statistics.
minmapq 40 Minimum MapQ value, above which a read pair is included in calculating

population statistics.
minsize 10000 Minimum contig size to analyse.
prior 0.01 Prior probablility that the insert size is anomalous.
stepsize 1000 Step-size in bases to traverse contigs.
trim 5000 Number of bases to trim from each side of an identified misassembly.
T -4.0 Threshold in Z score (standard deviations from the mean) below which a

misassembly is called.
window 200 Window size across which bridging mate pairs are evaluated.

Optional arguments are called from the commmand line, as shown in the example below:

python nxrepair.py aligned_matepairs.bam assemblyfasta.fasta error_locations.csv new_fasta.fasta -minsize 20000 -trim 4000 -T -5.0

The program will parse a bam file of reads aligned to your de novo assembly. Each contig that is larger than the
min_size parameter will be analysed for potential structural misassemblies. When the program completes, a minimum
of two new files will be generated:

1. A new fastafile, specified by newfasta, that contains the improved contigs of the de novo assembly.

2. A csv file that identifies the exact position where altered contigs were broken.

3. If the optional argument -img_name was included, for each contig analysed, a plot will be generated showing
the insert size distribution and directionality across the contig, with anomalous regions highlighted. These plots
will be saved in the folder specified by img_name

Outputs 2 and 3 can allow identification of further, smaller structural misassemblies, as well as enabling verification
of detected misassemblies using IGV.

2.3 How Does it Work?

NxRepair evaluates the insert sizes of mate pairs aligned across a contig. Regions of the contig that have unusual insert
sizes, where few reads are aligned, or where a large fraction of the mate pairs have incorrect orientation are flagged as
potentially anomalous based on a simple probabilistic model of the mate-pair size distribution. Where there is strong
evidence that a region is misassembled, the contig will be broken into two pieces and 5 Kb of erroneous assemby will
be trimmed from both sides of the break.

6 Chapter 2. Tutorial: Misassembly Detection using NxRepair

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

7

misassembly_detection Documentation, Release 1.0

8 Chapter 3. Indices and tables

Python Module Index

n
nxrepair, 3

9

	NxRepair: API
	Tutorial: Misassembly Detection using NxRepair
	Installing NxRepair
	Running NxRepair
	How Does it Work?

	Indices and tables
	Python Module Index

